quasireflexive space - traduction vers russe
DICLIB.COM
Outils linguistiques IA
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse des mots par intelligence artificielle

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

quasireflexive space - traduction vers russe

LOCALLY CONVEX TOPOLOGICAL VECTOR SPACE THAT COINCIDES WITH THE CONTINUOUS DUAL OF ITS CONTINUOUS DUAL SPACE, BOTH AS LINEAR SPACE AND AS TOPOLOGICAL SPACE
Reflexive Banach space; Semi-reflective space; Quasireflexive Banach space; Quasi-reflexive Banach space; Quasireflexive space; Quasi-reflexive space; Stereotype space; Wikipedia talk:Articles for creation/Stereotype space

quasireflexive space         

математика

квазирефлексивное пространство

reflexive space         

математика

рефлексивное пространство

three-space         
  • A right-handed three-dimensional [[Cartesian coordinate system]] used to indicate positions in space<!--(See diagram description for needed correction.)-->
  • thumb
GENERAL FRAMEWORK
Physical space; Space (philosophy); Space (physics); Space (astronomy); Three-Space; Astrophobia; Draft:Space; Geographical space

математика

трехмерное пространство

Définition

ЕВРОПЕЙСКОЕ КОСМИЧЕСКОЕ АГЕНТСТВО
(ЕКА) , международная организация 10 стран. Создана в 1975. Разрабатывает космические аппараты (КА) коммерческого и хозяйственно-прикладного назначения. ЕКА имеет сеть станций слежения за полетом космических аппаратов с центром управления в Дармштадте (Германия).

Wikipédia

Reflexive space

In the area of mathematics known as functional analysis, a reflexive space is a locally convex topological vector space (TVS) for which the canonical evaluation map from X {\displaystyle X} into its bidual (which is the strong dual of the strong dual of X {\displaystyle X} ) is an isomorphism of TVSs. Since a normable TVS is reflexive if and only if it is semi-reflexive, every normed space (and so in particular, every Banach space) X {\displaystyle X} is reflexive if and only if the canonical evaluation map from X {\displaystyle X} into its bidual is surjective; in this case the normed space is necessarily also a Banach space. In 1951, R. C. James discovered a Banach space, now known as James' space, that is not reflexive but is nevertheless isometrically isomorphic to its bidual (any such isomorphism is thus necessarily not the canonical evaluation map).

Reflexive spaces play an important role in the general theory of locally convex TVSs and in the theory of Banach spaces in particular. Hilbert spaces are prominent examples of reflexive Banach spaces. Reflexive Banach spaces are often characterized by their geometric properties.

Traduction de &#39quasireflexive space&#39 en Russe